Representation of QSD by a new chain

# Quasi-stationary distribution for *R*-recurrent Markov chains

Qian Du

Beijing Normal University

July 31, 2023



Beijing Normal University

Quasi-stationary distribution for R-recurrent Markov chains

Qian Du

Representation of QSD by a new chain

# **1** Quasi-stationary distribution(QSD)

- 2 R-recurrence (positivity)
- **3** Representation of QSD by a new chain

Qian Du

Beijing Normal University

### Discrete-time Markov chain

• Let  $(X_n)_{n \in \mathbb{Z}_+}$  be a Markov chain with the countable state space *E*:

$$\mathbb{P}[X_n = j | X_{n-1} = i, \cdots] = \mathbb{P}[X_n = j | X_{n-1} = i] =: p_{ij}.$$

*n*-step transition probability

$$p_{ij}^{(n)} = \mathbb{P}[X_n = j | X_0 = i].$$

2 Assume P = (p<sub>ij</sub>)<sub>i,j∈E</sub> is irreducible and aperiodic.
3 For H ⊂ E, define the return time :

$$\tau_{H}^{+} = \inf\{n \ge 1 : X_{n} \in H\}.$$
Denote  $\tau_{j}^{+} = \tau_{H}^{+}$  when  $H = \{j\}.$ 
4 For  $n \ge 1$ ,
$$f_{ij}^{(n)} = \mathbb{P}_{i}[\tau_{i}^{+} = n], \quad f_{ij} = \mathbb{P}_{i}[\tau_{i}^{+} < \infty]$$

Qian Du

Representation of QSD by a new chain

### Positive recurrence, stationary distribution, ergodicity

- 1) j is recurrent iff  $f_{jj} = 1$ .
- 2 If *j* is recurrent, it is positive recurrent iff  $\mathbb{E}_j \tau_j^+ < \infty$ .
- **3** Stationary distribution:

$$\pi_j = \frac{1}{\mathbb{E}_j \tau_j^+}.$$

**4** *j* ergodic:

Qian Du

$$p_{ij}^{(n)} o \pi_j = rac{1}{\mathbb{E}_j au_j^+} > 0.$$

 Equivalence between positive recurrence, stationary distribution and ergodicity.

[2]M.-F.Chen, Y.-H.Mao(2021). Introduction to stochastic processes.

Representation of QSD by a new chain



*P* on a countable set  $E \cup \{0\}$ ,  $p_{00} = 1$ ,  $\tau_0 = \inf\{n \ge 0 : X_n = 0\}$ . Assume *P* is irreducible on *E* and  $\mathbb{P}_i[\tau_0 < \infty] = 1$ .  $\forall i \in E, \exists \lambda > 0$  and proper probability  $u = u_\lambda$  on *E* such that

$$uP = \lambda u$$
 on  $E$ 

or

$$\sum_{i\in E} u_i p_{ij} = \lambda u_j, \quad \forall \ j\in E.$$

Then u is called a  $\lambda$ -QSD.

[6]Yaglom(1947). Certain limit theorems of the theory of branching random processes.

[5]Erik A van Doorn and Philip K Pollett(2012). Quasi-stationary distributions for discrete-state models.

Qian Du

Beijing Normal University

Representation of QSD by a new chain

## Convergence rate of P

### 1

$$R = \inf\{r : \sum_{n \ge 0} r^n p_{ij}^{(n)} = \infty\}$$
$$= \sup\{r : \sum_{n \ge 0} r^n p_{ij}^{(n)} < \infty\}$$

**2**  $R \ge 1$ , independent of i, j.

- *R* = 1: identical to the usual concepts of recurrence and transience.
- R > 1: a subclassification of transient classes.

Representation of QSD by a new chain

Quasi-stationary distribution(QSD)

**2** *R*-recurrence (positivity)

3 Representation of QSD by a new chain

Qian Du

Beijing Normal University

R-recurrence (positivity) ○●○○○○○○○○○ Representation of QSD by a new chain

### *R*-recurrence

Qian Du

1 
$$P_{ij}(R) = \sum_{n=0}^{\infty} R^n p_{ij}^{(n)} = \infty$$
 iff  $F_{jj}(R) = \sum_{n=1}^{\infty} R^n f_{jj}^{(n)} = 1.$ 

② ⇔ *R*-invariant measure *u* > 0 and vector *v* > 0 are unique up to constant multiples,

$$uP = (1/R)u, \quad Pv = (1/R)v.$$

**3** If *P* is *R*-recurrent, then *P* is *R*-positive iff  $\sum_{i \in E} u_i v_i < \infty$ , and then as  $n \to \infty$ ,

$$R^n p_{ij}^{(n)} o rac{
u_i u_j}{\sum\limits_{i \in E} u_i v_i}$$

4 Relation between QSD, R-recurrence, R-positivity.

[4]Kingman, J.F.C. (1963). The exponential decay of Markov transition probabilities.

### Questions

What are explicit representations of u and v?
 (1/R)-QSD: ∑<sub>i∈E</sub> u<sub>i</sub> < ∞?</li>
 *R*-positivity: ∑<sub>i∈E</sub> u<sub>i</sub>v<sub>i</sub> < ∞?</li>

# Taboo probability

Let H be an arbitrary set of states. We define

$$_{H}p_{ij}^{(n)} = \mathbb{P}[X_n = j, X_v \notin H, 1 \le v \le n - 1 | X_0 = i], \quad n \ge 1.$$

[3]Chung (1967) Markov Chains With Stationary Transition Probabilities.

Representation of QSD by a new chain

 $\sum n_{i} < 1$  and  $\sum n_{i} = 1 \quad \forall i > 2$ 

# Single-exit case

Qian Du

Beijing Normal University

Quasi-stationary distribution for R-recurrent Markov chains

 $\square$  Let  $D = (n_1)$  ... with

Representation of QSD by a new chain

# Sum of *u*

# 1 We see that

$$\begin{split} \sum_{i \in E} u_i &= \sum_{i \in E} \sum_{n \ge 1} R^n {}_1 p_{1i}^{(n)} \\ &= \sum_{n \ge 1} R^n \mathbb{P}_1 [X_n \in E, \tau_1^+ \ge n] \\ &= \sum_{n \ge 1} R^n \left\{ \sum_{m=n}^{\infty} \mathbb{P}_1 [\tau_1^+ = m, \tau_0 > n] + \mathbb{P}_1 [\tau_1^+ = \infty, \tau_0 > n] \right\} \\ &= \frac{1}{R-1} \mathbb{E}_1 R^{\tau_0} I_{\{\tau_1^+ = \infty\}} = \frac{R}{R-1} p_{10}. \end{split}$$

**2** There is a (1/R)-QSD when P is single-exit.

# Explicit representations of u and v

### Theorem 1

Assume *P* is irreducible and aperiodic on *E*, 0 is certainly absorbing, R > 1, *R*-recurrent. Let  $H = \{i \in E : p_{i0} > 0\}$  such that  $|H| < \infty$ , fix  $k \in H$ , then  $\forall j \in E$ ,

$$u_j = \sum_{i \in H} u_i \sum_{n=1}^{\infty} R^n{}_H p_{ij}^{(n)}, \quad v_j = \sum_{i \in H} \sum_{n=1}^{\infty} R^n{}_H f_{ji}^{(n)} v_h$$

satisfy uP = (1/R)u, Pv = (1/R)v and

$$\frac{(R-1)u}{\sum_{i\in H} u_i \mathbb{E}_i R^{\tau_0} I_{\{\tau_H^+=\infty\}}}$$

is a (1/R)-QSD of P, where  $\forall j \in H$ ,  $u_j = \sum_{n \ge 1} R^n_{kp} p_{kj}^{(n)}$ ,  $v_j = \sum_{n \ge 1} R^n f_{jk}^{(n)}$ .

Quasi-stationary distribution for R-recurrent Markov chains

Qian Du

Representation of QSD by a new chain

# *R*-positive recurrence

Furthermore, *P* is *R*-positive recurrent if and only if  $\mathbb{E}_k \tau_k^+ R^{\tau_k^+} < \infty$ , and then

$$R^n p_{ij}^{(n)} o rac{
u_i u_j}{\mathbb{E}_k \tau_k^+ R^{ au_k^+}}, \quad n o \infty.$$

• If 
$$R = 1$$
, then

$$p_{ij}^{(n)} o rac{u_j}{\mathbb{E}_k \tau_k^+}, \quad n o \infty,$$

where 
$$u_j = \sum\limits_{n=1}^\infty {_kp_{kj}^{(n)}}.$$
 Particularly,

$$p_{ik}^{(n)} o rac{1}{\mathbb{E}_k au_k^+}, \quad n o \infty.$$

Qian Du

Beijing Normal University

Representation of QSD by a new chain

### *h*-transform

Qian Du

- **1** Let *P* be irreducible and aperiodic.
- **2** Assume  $H = \{i \in E : p_{i0} > 0\} = \infty$ .
- **3** Let the harmonic function  $h = (h_i)$ ,

$$Ph(i) = h_i, \ \forall \ i \neq 1; \ h_1 = 1,$$

 $\tau_1 = \inf\{n \ge 0 : X_n = 1\}, \ h_i = \mathbb{P}_i[\tau_1 < \infty].$ 4 Define  $P^h = (p_{ij}^h)$  by

$$p_{ij}^h = rac{p_{ij}h_j}{h_i}, \ \forall i, j$$

Then  $\sum_{j \in E} p_{ij}^h = 1, \ \forall \ i \neq 1, \ \mathsf{and} \ \sum_{j \in E} p_{1j} < 1, \ \mathsf{i.e.} \ P^h$  is single-exit.

Representation of QSD by a new chain

# *h*-transform

# We see that

 $\sim$ 

$$u_i^h = \sum_{n=1}^{\infty} R^n {}_1 p_{1i}^{h(n)} = \sum_{n=1}^{\infty} R^n {}_1 p_{1i}^{(n)} h$$

satisfies 
$$\sum_{i \in E} u_i^h p_{ij}^h = (1/R) u_j^h$$
 or  $\sum_{i \in E} \frac{u_i^h}{h_i} p_{ij} = (1/R) \frac{u_j^h}{h_j}$ .

2 
$$u_i = \sum_{n=1}^{\infty} R^n {}_1 p_{1i}^{(n)}$$
 is the *R*-invariant measure of *P*.

3) 
$$\inf_{i \in E} \mathbb{P}_i[\tau_j < \infty] > 0$$
 for some  $j \in E \Rightarrow$ 

$$(u_i)_{i \in E} \text{ is a } (1/R)\text{-}\mathsf{QSD of } P.$$

Qian Du

Beijing Normal University

| Quasi-stationary | distribution(QSD) |  |
|------------------|-------------------|--|
| 00000            |                   |  |

Representation of QSD by a new chain

### Infinite-exit case

### Theorem 2

Assume *P* is irreducible on *E* and 0 is certainly absorbing and *R*-recurrent. Let  $H = \{i \in E : p_{i0} > 0\}$ . Assume  $\inf_{i \in E} \mathbb{P}_i[\tau_j < \infty] > 0$  for some *j*, then

$$u_i = \sum_{n=1}^{\infty} R^n {}_1 p_{1i}^{(n)}$$

satisfies

and

Qian Du

$$uP = (1/R)u$$

$$\frac{(R-1)\sum_{n=1}^{\infty}R^{n}{}_{1}p_{1i}^{(n)}}{\sum_{i\in H}u_{i}\mathbb{E}_{i}R^{\tau_{0}}I_{\{\tau_{H}^{+}=\infty\}}}$$

is a QSD of P.

Beijing Normal University

Quasi-stationary distribution(QSD)

- **2** *R*-recurrence (positivity)
- 3 Representation of QSD by a new chain

Qian Du

Beijing Normal University

# Perron-Frobenius theorem

# Perron-Frobenius theorem

For a non-negative, irreducible matrix A, the largest eigenvalue  $\rho$  is positive, its corresponding left eigenvector u and right eigenvector v are positive as well, that is

$$\begin{cases}
uA = \rho u, \\
Av = \rho v.
\end{cases}$$

• Assume that  $\sum u_i = 1$  and  $\sum u_i v_i = 1$ .

Quasi-stationary distribution for R-recurrent Markov chains

Qian Du

# A clever argument due to Cerf and Dalmau

- **1** A is a primitive matrix of size N,
- **2** Let u be Perron-Frobenius (left) eigenvector:

$$uA = \lambda u, \quad u > 0, \lambda > 0,$$

3 Set 
$$\sum_{i} a_{ij} = f(i), M_{ij} = \frac{a_{ij}}{f(i)}$$

④ let  $(X_n)_{n \in \mathbb{Z}_+}$  be a Markov chain with state space  $\{1, \dots, N\}$ and transition matrix M,  $\tau_i^+ = \inf\{n \ge 1 : X_n = j\}$ .

[1]Cerf and Dalmau(2017)A Markov chain representation of normalized Perron-Frobenius eigenvector.

### Representation of *u*

# Theorem (Cerf and Dalmau(2017))

Let  $1 \leq k \leq N$ . The normalized Perron–Frobenius eigenvector u of A is given by the formula

$$\forall i \in \{1, \cdots, N\}, \ u_i = \frac{\mathbb{E}_k \left(\sum_{n=0}^{\tau_k^+ - 1} (I_{\{X_n = i\}} \lambda^{-n} \prod_{m=0}^{n-1} f(X_m))\right)}{\mathbb{E}_k \left(\sum_{n=0}^{\tau_k^+ - 1} (\lambda^{-n} \prod_{m=0}^{n-1} f(X_m))\right)}$$

• If A is stochastic, then  $\lambda = 1$  and  $f \equiv 1$ , to derive that  $\pi_i = \frac{1}{\mathbb{E}_i \tau_i^+}$ .

Beijing Normal University

Qian Du

# Countable Matrix

**1** Let  $A = (a_{ij})_{i,j \in \mathbb{Z}_+}$  be irreducible and aperiodic,

**2** Assume that  $\forall i \in \mathbb{Z}_+$ ,

$$f(i)=\sum_j a_{ij}<\infty.$$

What we can do Perron-Frobenius for A whether we have uA = ρu, ρ > 0, u > 0?

### Convergence rate

1 Define the convergence rate

$$\begin{split} \rho &= \inf \left\{ \lambda > 0 : \sum_{n \geq 0} \lambda^n a_{ij}^{(n)} = \infty \right\} \\ &= \sup \left\{ \lambda > 0 : \sum_{n \geq 0} \lambda^n a_{ij}^{(n)} < \infty \right\}. \end{split}$$

- **2** By irreducibility,  $\rho$  is independent of *i*, *j*.
- **3**  $\rho$  is critical in the sense that  $\sum_{n} \rho^{n} a_{kk}^{(n)}$  can be finite or infinite.

Beijing Normal University

# Main idea

**1** Define: 
$$\forall i, j,$$

$$b_{ij}^{(1)} = a_{ij}, \ b_{ij}^{(n)} = \sum_{k \neq i} b_{ik}^{(n-1)} a_{kj}, \ n \ge 2.$$

**2** 
$$\forall k \in E$$
,  
 $y_i^{(1)} = \rho a_{ki}, \ y_i^{(n+1)} = \rho \sum_{i \neq k} y_j^{(n)} a_{ji}$ ,

**3** Minimal nonnegative solution:

$$u_i = \sum_{n=1}^{\infty} y_i^{(n)} = \rho \sum_{n=2}^{\infty} \sum_{j \neq k} y_j^{(n-1)} a_{ji} + \rho a_{ki}$$
$$= \rho \sum_{j \neq k} u_j a_{ji} + \rho a_{ki}.$$

**4** Key: 
$$u_k = \sum_{n=1}^{\infty} \rho^n b_{kk}^{(n)} = 1.$$

Qian Du

Beijing Normal University



# Recurrence

• Introduce two generation functions:

$$A_{kk}(s) = \sum_{n=0}^{\infty} a_{kk}^{(n)} s^n, \quad B_{kk}(s) = \sum_{n=1}^{\infty} b_{kk}^{(n)} s^n, \quad s \in (0, \rho),$$

• 
$$B_{kk}(s) = 1 - 1/A_{kk}(s)$$

### Lemma

Let 
$$k \in E$$
. Assume that  $\rho \in (0, \infty)$  and  $\sum_{n=0}^{\infty} \rho^n a_{kk}^{(n)} = \infty$ , then  

$$1 = \sum_n b_{kk}^{(n)} \rho^n.$$

Qian Du

Beijing Normal University

# Representation of *u*

# Theorem 3

Fix 
$$k \in E$$
. Assume  $f(i) < \infty$ ,  $\forall i \in E$ ,  $\rho > 0$  and  $\sum_{n=0}^{\infty} \rho^n a_{kk}^{(n)} = \infty$ .  
Then

$$i \in E, \ u_i = \mathbb{E}_k \left( \sum_{n=0}^{\tau_k^+ - 1} \left( I_{\{X_n = i\}} \rho^n \prod_{m=0}^{n-1} f(X_m) \right) \right) \in (0, \infty)$$

and  $u = (u_i)_{i \in E}$  satisfies

 $uA = (1/\rho)u.$ 

Qian Du

Beijing Normal University



# Corollary

We note that

$$\sum_{i\in E} u_i = \mathbb{E}_k \left( \sum_{n=0}^{\tau_k^+ - 1} \left( \rho^n \prod_{m=0}^{n-1} f(X_m) \right) \right)$$

To assure that  $(u_i)_{i \in E}$  is summable, we shall assume that for some k,  $\mathbb{E}_k \left( \sum_{n=0}^{\tau_k^+ - 1} \left( \rho^n \prod_{m=0}^{n-1} f(X_m) \right) \right) < \infty.$ 

Qian Du

Beijing Normal University

# Finite Markov chain

- Let *P* be an irreducible and aperodic, sub-stochastic transition probability matrix.
- **2** By Perron-Frobenius theorem,  $\exists \rho > 0, u > 0$ ,

$$uP = \rho u.$$

- **3** By assuming  $\sum_{i \in E} u_i = 1$ , we see that u is a QSD for P.
- Now, Cerf and Dalmau theorem gives an elegant representation of QSD.

# Countable Markov chain

### Theorem 4

Assume *P* is irreducible on *E*, R > 1, 0 is certainly absorbing and *R*-recurrent. Let  $H = \{i \in E : p_{i0} > 0\}$  such that  $|H| < \infty$ . Then

$$u_j = \sum_{i \in H} u_i \mathbb{E}_i \left( \sum_{n=0}^{\widetilde{\tau}_H^+ - 1} I_{\{\widetilde{X}_n = j\}} R^n \prod_{m=0}^{n-1} f\left(\widetilde{X}_m\right) \right), \quad j \in E$$

satisfies uP = (1/R)u and  $\mu$  is a QSD of P, where  $k \in H$  is fixed,

$$u_j = \sum_{n=1}^{\infty} R^n{}_k p_{kj}^{(n)}, \quad j \in H; \quad \mu = \frac{R-1}{R \sum_{i \in H} u_i p_{i0}} u.$$

Qian Du

Beijing Normal University

# Single-exit case

Particularly if H is singleton  $\{1\}(say)$ , then

$$u_1 = 1,$$
  
$$u_i = \mathbb{E}_1 \left( \sum_{n=0}^{\widetilde{\tau}_1^+ - 1} \left( I_{\{\widetilde{X}_n = i\}} R^n \prod_{m=0}^{n-1} f(\widetilde{X}_m) \right) \right)$$

satisfies uP = (1/R)u and  $\mu$  is a QSD of P.

Qian Du

Beijing Normal University

| Quasi-stationary | distribution(QSD) |
|------------------|-------------------|
| 00000            |                   |

### *h*-transform

### Theorem 5

Assume *P* is irreducible on *E* and 0 is certainly absorbing and R > 1, *R*-recurrent. Let  $H = \{i \in E : p_{i0} > 0\}$ . Assume  $\inf_{i \in E} \mathbb{P}_i[\tau_j < \infty] > 0$  for some *j*, then

$$u_i = \mathbb{E}_1\left(\sum_{n=0}^{\widetilde{\tau}_1^+ - 1} \left( I_{\{\widetilde{X}_n = i\}} R^n \prod_{m=0}^{n-1} f(\widetilde{X}_m) \right) \right)$$

satisfies uP = (1/R)u and

$$\frac{\mathbb{E}_{1}\left(\sum_{n=0}^{\widetilde{\tau}_{1}^{+}-1}\left(I_{\{\widetilde{X}_{n}=i\}}R^{n}\prod_{m=0}^{n-1}f(\widetilde{X}_{m})\right)\right)}{\mathbb{E}_{1}\left(\sum_{n=0}^{\widetilde{\tau}_{1}^{+}-1}\left(R^{n}\prod_{m=0}^{n-1}f(\widetilde{X}_{m})\right)\right)}$$

is a QSD of P.

#### Qian Du

Beijing Normal University

# References I

### [1] Raphal Cerf and J. Dalmau.

A Markov chain representation of the normalized Perron–Frobenius eigenvector.

Electronic Communications in Probability, 22, 2017.

[2] Mu-Fa Chen and Yong-Hua Mao.

Introduction to stochastic processes. World Scientific, 2021.

[3] Kai-Lai Chung.

Markov chains with stationary transition probabilities. Springer Berlin Heidelberg, 2nd edition, 1967.

[4] J.F.C. Kingman.

The exponential decay of markov transition probabilities.

Proceedings of the London Mathematical Society, 3:337–358, 1963.

# References II

### [5] Erik A van Doorn and Philip K Pollett.

Quasi-stationary distributions for discrete-state models. *European journal of operational research*, 230:1–14, 2013.

#### [6] A. M. Yaglom.

Certain limit theorems of the theory of branching random processes. *Doklady Akademii nauk SSSR*, 56(5):795–798, 1947.

Thanks for your attention!

Qian Du

Beijing Normal University